Ask Question
17 August, 00:57

Show that sinA - cosA + 1 / sinA + cosA - 1 = secA + tanA

+3
Answers (1)
  1. 17 August, 01:26
    0
    sinA - cosA + 1 / sinA + cosA - 1 = secA + tanA

    Now secA = 1/cosA and tanA = sinA/cosA

    So sinA - cosA + 1 / sinA + cosA - 1 = 1/cosA + sinA / cosA

    From now on I'll write sinA = s and cosA = c : -

    (s - c + 1) / (s + c - 1) = 1/c + s/c

    (s - c + 1) / (s + c - 1) = (1 + s) / c

    Cross multiply:-

    s + c - 1 + s^2 + sc - s = sc - c^2 + c

    s^2 + c + sc - 1 = sc - c^2 + c

    s^2 - 1 + sc - sc + c - c = - c^2

    s^2 - 1 = - c^2

    - (1 - s^2) = - c^2

    Now 1 - s^2 = c^2 so:-

    - c^2 = - c^2

    So the identity is proved
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Show that sinA - cosA + 1 / sinA + cosA - 1 = secA + tanA ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers