Ask Question
21 June, 13:13

Prove the identity cos (x-y) - cos (x+y) = 2sinxsiny

+1
Answers (1)
  1. 21 June, 13:37
    0
    cos (x-y) - cos (x+y) = 2sinxsiny

    Use cosine addition and subtraction identities:

    cos (x-y) = cos x cos y + sin x sin y

    cos (x+y) = cos x cos y - sin x sin y

    So

    LHS = cos (x-y) - cos (x+y)

    = cos x cos y + sin x sin y - (cos x cos y - sin x sin y)

    = cos x cos y + sin x sin y - cos x cos y + sin x sin y

    cos x cos y and - cos x cos y are additive inverses; they sum together to get 0.

    LHS = sin x sin y + sin x sin y

    = 2 sin x sin y

    = RHS
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Prove the identity cos (x-y) - cos (x+y) = 2sinxsiny ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers