Ask Question
7 November, 12:08

3. The width and length of a rectangle are

consecutive integers. If the perimeter of

the rectangle is 142 inches, find the width

and length of the rectangle.

+2
Answers (2)
  1. 7 November, 12:14
    0
    The dimensions of the rectangle are 35 inches by 36 inches.

    Step-by-step explanation:

    If the length and width are consecutive integers and L=n, then W=n+1 assuming the width is larger.

    We are given the perimeter is 142 inches so: 2L+2W=142.

    Substituting L=n and W=n+1 we have: 2 (n) + 2 (n+1) = 142.

    Let's solve it:

    2 (n) + 2 (n+1) = 142

    Distribute:

    2n+2n+2=142

    Combine like terms:

    4n+2=142

    Subtract 2 on both sides:

    4n=140

    Divide both sides by 4:

    n=140/4

    n=35

    Since L=n, then the length is 35 inches.

    Since W=n+1, then the width is 36 inches.

    The dimensions of the rectangle are 35 inches by 36 inches.
  2. 7 November, 12:22
    0
    35 and 36

    Step-by-step explanation:

    If the smaller dimension is x, then the larger dimension is x + 1. Therefore:

    2x + 2 (x + 1) = 142

    2x + 2x + 2 = 142

    4x = 140

    x = 35

    One dimension is 35, and the other dimension is 36.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “3. The width and length of a rectangle are consecutive integers. If the perimeter of the rectangle is 142 inches, find the width and length ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers