Ask Question
1 March, 16:07

A water heater that has the shape of a right cylindrical tank with a radius of 1 foot and a height of 4 feet is being drained. how fast is the water draining out of the tank in cubic feet / minute if the water level is dropping at 6 inches/min?

+5
Answers (1)
  1. 1 March, 16:15
    0
    For any prism-shaped geometry, the volume (V) is assumed by the product of cross-sectional area (A) and height (h).

    V = Ah

    Distinguishing with respect to time gives the relationship between the rates.

    dV/dt = A*dh/dt

    in the meantime the area is not altering

    dV/dt = π * (1 ft) ^2 * (-0.5 ft/min)

    dV/dt = - π/2 ft^3/min ≈ - 1.571 ft^3/min

    Water is draining from the tank at the rate of π/2 ft^3/min.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “A water heater that has the shape of a right cylindrical tank with a radius of 1 foot and a height of 4 feet is being drained. how fast is ...” in 📗 Physics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers