Ask Question
21 October, 06:24

Calculate the pressure (psig) at the bottom of a 7500 foot column of fluid for each of the following fluids:

a) Water

b) Drilling Mud (SG = 1.3)

c) Gas Lift column (S. G. = 0.85)

d) Natural Gas Column (SG = 0.6*) '*SG for Natural Gas is compared against air (density = 0.0765 lb / (cu ft))

+2
Answers (1)
  1. 21 October, 06:47
    0
    Pressure at the botton of 7500 ft column is:

    a) P (water) = 3256.508 psig

    b) P (drilling mud) = 4229.035 psig

    c) P (gas lift) = 18.092 psig

    d) P (Natural gas) = 17.092 psig

    Explanation:

    hidrostatic pressure:

    P = (d. f * g * h) + Po

    ∴ density of fluid (d. f) ≡ Kg/m³

    ∴ aceleration o gravity (g) = 9.807 m/s²

    ∴ column height (h) = 7500 ft * (m / 3.28084 ft) = 2285.99 m

    ∴ atmospheric pressure (Po) = 101300 Pa (Kg / m*s²)

    specific gravity:

    SG = d. f / d H2O (ref)

    ∴ d H2O = 997 Kg/m³

    a) water:

    ⇒ P = (997 * 9.807 * 2285.99) + 101300

    ⇒ P = 22452844,88 Pa * (psig / 6894.76 Pa) = 3256.508 psig

    b) Drilling Mud

    ⇒ SG = 1.3 = d. f / 997

    ⇒ d. f = 1296.1 Kg/m³

    ⇒ P = (1296.1 * 9.807 * 2285.99) + 101300

    ⇒ P = 29158182.16 Pa = 4229.035 psig

    c) Gas lift column

    ⇒ SG = 0.85 = d. f / d. air (ref)

    ∴ d. air = 0.0765 Lb/ft³ = 1.23 Kg/m³

    ⇒ d. f = 1.23 * 0.85 = 1.0455 Kg/m³

    ⇒ P = (1.0455 * 9.807 * 2285.99) + 101300

    ⇒ P = 124738.755 Pa = 18.092 psig

    d) Natural Gas column:

    ⇒ SG = 0.6 = d. f / 1.23

    ⇒ d. f = 0.738 Kg/m³

    ⇒ P = (0.738 * 9.807 * 2285.99) + 101300

    ⇒ P = 117845.003 Pa = 17.092 psig
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Calculate the pressure (psig) at the bottom of a 7500 foot column of fluid for each of the following fluids: a) Water b) Drilling Mud (SG = ...” in 📗 Chemistry if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers