Ask Question
22 November, 03:05

Let the random variable Z follow a standard normal distribution. a. Find P1Z 6 1.202. b. Find P1Z 7 1.332. c. Find P1Z 7-1.702. d. Find P1Z 7-1.002. e. Find P11.20 6 Z 6 1.332. f. Find P1-1.70 6 Z 6 1.202. g. Find P1-1.70 6 Z 6-1.002.

+4
Answers (1)
  1. 22 November, 03:09
    0
    The data in the question seems a bit erroneous so I am writing the complete question below:

    Let the random variable Z follow a standard normal distribution.

    a. Find P (Z < 1.20).

    b. Find P (Z > 1.33).

    c. Find P (Z > - 1.70).

    d. Find P (Z > - 1.00).

    e. Find P (1.20 < Z < 1.33).

    f. Find P (-1.70 < Z < 1.20).

    g. Find P (-1.70 < Z < - 1.00).

    Answer:

    (a) P (Z < 1.20) = 0.8849

    (b) P (Z > 1.33) = 0.0918

    (c) P (Z > - 1.70) = 0.9554

    (d) P (Z > - 1.00) = 0.8413

    (e) P (1.20 < Z < 1.33) = 0.0233

    (f) P (-1.70 < Z < 1.20) = 0.8403

    (g) P (-1.70 < Z < - 1.00) = 0.1141

    Explanation:

    To answer this question, we would need to use the Normal Distribution Probability table. The table shows areas under the normal curve to the left of the z value i. e. it shows P (Z
    (a) We need to compute P (Z < 1.20). For this, we will look for the area under the normal curve at z=1.20 in the Normal Distribution Probability Table. So,

    P (Z < 1.20) = 0.8849

    (b) Now we need to compute P (Z > 1.33). For this, we will find the value of P (Z 1.33).

    P (Z > 1.33) = 1 - P (Z < 1.33)

    = 1 - 0.9082

    P (Z > 1.33) = 0.0918

    (c) Similar to part (b), we will find the value of P (Z - 1.70).

    P (Z > - 1.70) = 1 - P (Z < - 1.70)

    = 1 - 0.0446

    P (Z > - 1.70) = 0.9554

    (d) P (Z > - 1.00) = 1 - P (Z < - 1.00)

    = 1 - 0.1587

    P (Z > - 1.00) = 0.8413

    (e) To compute P (1.20 < Z < 1.33), we will first find the value of P (Z<1.20) and subtract it from the value of P (Z<1.33) using the normal distribution table.

    P (1.20 < Z < 1.33) = P (Z < 1.33) - P (Z < 1.20)

    = 0.9082 - 0.8849

    P (1.20 < Z < 1.33) = 0.0233

    (f) P (-1.70 < Z < 1.20) = P (Z < 1.20) - P (Z < - 1.70)

    = 0.8849 - 0.0446

    P (-1.70 < Z < 1.20) = 0.8403

    (g) P (-1.70 < Z < - 1.00) = P (Z < - 1.00) - P (Z < - 1.70)

    = 0.1587 - 0.0446

    P (-1.70 < Z < - 1.00) = 0.1141
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Let the random variable Z follow a standard normal distribution. a. Find P1Z 6 1.202. b. Find P1Z 7 1.332. c. Find P1Z 7-1.702. d. Find P1Z ...” in 📗 Computers & Technology if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers