Ask Question
15 August, 19:46

A rectangular open channel is 20 ft wide and has a bed slope of 0.007. Manning's roughness coefficient n is 0.03. It is in uniform flow condition with a discharge of 400 cfs. (a) Calculate the normal depth. (b) Calculate the Froude number. (c) Calculate the critical depth and velocity. (d) Calculate the critical slope (e) Determine if the flow is in the sub-critical or super-critical state.

+3
Answers (1)
  1. 15 August, 19:55
    0
    a) normal depth, yn = 3.7ft

    b) Froude number, Fr = 0.49

    c) Critical depth, yc = 2.3 ft; Velocity, v = 5.4ft/s

    d) Critical slope, Sc = 14.784

    e) subcritical

    Explanation:

    Width, b = 20ft,

    Bed slope, s = 0.007

    Manning's roughness coefficient, n = 0.03

    Discharge, Q = 400 cfs

    a) normal depth, yn

    Q = A (1/n x R⅔ x s½)

    A = b x yn, R = b. yn / (b + 2yn)

    Substituting values,

    400 = 20 (yn) / 0.03 x (20 x yn/20 + 2yn) ⅔ x (0.007) ½

    Simplifying further,

    yn^ (5/2) - 1.918yn = 19.18

    Using trial and error,

    yn = 3.7ft

    Therefore the normal depth is 3.7 ft

    b) Froude number, Fr = v/√gD

    Where D is hydraulic depth given as,

    D = A/T

    D = yn (for rectangular channel

    Acceleration, g = 32.71 ft/s²

    V = Q/A

    Fr = 400 / (20x3.7) x√ (32.71 x 3.7)

    Fr = 0.49

    c) critical depth, yc = (Q²/gb²) ⅓

    yc = (400²/32.71*20²) ⅓

    yc = 2.3 ft

    Velocity, v = Q/A

    v = 400 / (3.7*20)

    v = 5.4ft/s

    d) critical slope, Sc

    Sc = (Qyc = 2.3 ftn/1.49Ac (Rhc) ⅔) ²

    Ac = b x yc, Rhc = (Ac/b + 2yc) ⅔

    Substituting,

    Sc = (400/1.49 x 20 x 2.3 x (20 x 2.3 / 20 + (2 x 2.3)) ⅔) 2

    Sc = 14.784

    e) since the normal depth is greater than critical depth, it is subcritical.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “A rectangular open channel is 20 ft wide and has a bed slope of 0.007. Manning's roughness coefficient n is 0.03. It is in uniform flow ...” in 📗 Engineering if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers