Ask Question
5 November, 10:05

Richard has just been given a 4-question multiple-choice quiz in his history class. each question has four answers, of which only one is correct. since richard has not attended class recently, he doesn't know any of the answers. assuming that richard guesses on all four questions, find the indicated probabilities. (round your answers to three decimal places.) (a) what is the probability that he will answer all questions correctly

+4
Answers (1)
  1. 5 November, 10:30
    0
    To solve the following problem, we must use the binomial probability equation. This is expressed mathematically as:

    P (r) = [n! / (n-r) ! r!] * p^r * q^ (n-r)

    where,

    n = total number of questions = 4

    r = number of correct questions = 4

    p = probability of success = 25% = 0.25

    q = probability of failure = 0.75

    Therefore substituting the values into the given equation will give us:

    P (r = 4) = [4! / 0! 4!] * 0.25^4 * 0.75^0

    P (r = 4) = 3.906 * 10^-3 = 0.391%

    Answer: Richard only has 0.391% to answer all questions correctly by guessing.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Richard has just been given a 4-question multiple-choice quiz in his history class. each question has four answers, of which only one is ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers