Ask Question
3 November, 00:11

A landscaper is creating a rectangular flower bed such that the width is half of the length. The area of the flower bed is 34 square feet. Write and solve an equation to determine the width of the flower bed, to the nearest tenth of a foot

+3
Answers (1)
  1. 3 November, 00:34
    0
    As for this problem, we will first establish that the length of the flower bed be represented as x, the width of the flower bed be represented as x/2, and the area of the flower bed be taken as it is since it is given. We then follow the formula for area which is length multiplied to width which is:

    A = LW

    we then substitute them

    34 square feet = x (x/2)

    now all we need to do is find x first.

    34 square feet = x squared / 2

    now do a cross multiplication

    68 square feet = x squared

    then get the square root of both sides

    8.246 feet = x

    Since x is equal to the length of the flower bed, all we have to do to get the width of it is to divide it by 2. So ...

    W = x/2

    W = 8.246 feet / 2

    W = 4.123 feet

    And since the problem asked it to find the width of the flower bed to the nearest tenth of a foot, the answer would be 4.1 ft.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “A landscaper is creating a rectangular flower bed such that the width is half of the length. The area of the flower bed is 34 square feet. ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers