Ask Question
8 March, 03:19

Factor completely x^8-16

A.) (x^4 - 4) (x^4 + 4)

B.) (x^2 - 2) (x^2 + 2) (x^4+4)

C.) (x^2 - 2) (x^2 + 2) (x^4-4)

D.) (x^2-2) (x^2-2) (x^4-4)

+3
Answers (2)
  1. 8 March, 03:30
    0
    B.) (x^2 - 2) (x^2 + 2) (x^4+4)

    Step-by-step explanation:

    x⁸ - 16

    (x⁴) ² - 4²

    (x⁴ - 4) (x⁴ + 4)

    [ (x²) ² - 2²] (x⁴ + 4)

    (x² - 2) (x² + 2) (x⁴ + 4)
  2. 8 March, 03:44
    0
    (x^2 - 2) (x^2+2) (x^4 + 4)

    Step-by-step explanation:

    x^8-16

    We know this is the difference of squares a^2 - b^2 = (a-b) (a+b)

    x^4 ^2 - 4^2 = (x^4 - 4) (x^4 + 4)

    We also recognize the x^4 - 4 is the difference of squares

    (x^2^2 - 2^2) (x^4 + 4)

    (x^2 - 2) (x^2+2) (x^4 + 4)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Factor completely x^8-16 A.) (x^4 - 4) (x^4 + 4) B.) (x^2 - 2) (x^2 + 2) (x^4+4) C.) (x^2 - 2) (x^2 + 2) (x^4-4) D.) (x^2-2) (x^2-2) (x^4-4) ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers