Ask Question
28 August, 10:26

Factor completely.

16n^6+40n^3+25

+2
Answers (2)
  1. 28 August, 10:36
    0
    Answer:Step 1:

    Equation at the end of step 1:

    ((16 • (n6)) + (23•5n3)) + 25

    Step 2:

    Equation at the end of step 2:

    (24n6 + (23•5n3)) + 25

    Step 3:

    Trying to factor by splitting the middle term

    3.1 Factoring 16n6+40n3+25

    The first term is, 16n6 its coefficient is 16.

    The middle term is, + 40n3 its coefficient is 40.

    The last term, "the constant", is + 25

    Step-1 : Multiply the coefficient of the first term by the constant 16 • 25 = 400

    Step-2 : Find two factors of 400 whose sum equals the coefficient of the middle term, which is 40.

    -400 + - 1 = - 401

    -200 + - 2 = - 202

    -100 + - 4 = - 104

    -80 + - 5 = - 85

    -50 + - 8 = - 58

    -40 + - 10 = - 50

    -25 + - 16 = - 41

    -20 + - 20 = - 40

    -16 + - 25 = - 41

    -10 + - 40 = - 50

    -8 + - 50 = - 58

    -5 + - 80 = - 85

    -4 + - 100 = - 104

    -2 + - 200 = - 202

    -1 + - 400 = - 401

    1 + 400 = 401

    2 + 200 = 202

    4 + 100 = 104

    5 + 80 = 85

    8 + 50 = 58

    10 + 40 = 50

    16 + 25 = 41

    20 + 20 = 40 That's it

    Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, 20 and 20

    16n6 + 20n3 + 20n3 + 25

    Step-4 : Add up the first 2 terms, pulling out like factors:

    4n3 • (4n3+5)

    Add up the last 2 terms, pulling out common factors:

    5 • (4n3+5)

    Step-5 : Add up the four terms of step 4:

    (4n3+5) • (4n3+5)

    Which is the desired factorization

    Trying to factor as a Sum of Cubes:

    3.2 Factoring: 4n3+5

    Theory : A sum of two perfect cubes, a3 + b3 can be factored into:

    (a+b) • (a2-ab+b2)

    Proof : (a+b) • (a2-ab+b2) =

    a3-a2b+ab2+ba2-b2a+b3 =

    a3 + (a2b-ba2) + (ab2-b2a) + b3=

    a3+0+0+b3=

    a3+b3

    Check : 4 is not a cube!

    Step-by-step explanation: I believe that is the answer because i got it right.
  2. 28 August, 10:37
    0
    Step-by-step explanation:

    (a + b) ² = a² + 2ab + b²

    16n⁶ + 40n³ + 25 = 4² * (n³) ² + 2 * 4n³ * 5 + 5²

    = (4n³) ² + 2 * 4n³*5 + 5²

    = (4n³ + 5) ²
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Factor completely. 16n^6+40n^3+25 ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers