Ask Question
13 January, 11:22

The m∠B is two more than three times the measure of ∠C. If ∠B and ∠C are complementary angles, find the measures of both angles.

+5
Answers (1)
  1. 13 January, 11:31
    0
    B = 68° and C = 22°

    Step-by-step explanation:

    Let angle B's measure be B and angle C's measure be C.

    Also note that complementary means that they sum to 90.

    Now:

    The m∠B is two more than three times the measure of ∠C:

    we can write:

    B = 3C + 2

    If ∠B and ∠C are complementary angles:

    B + C = 90

    Putting 1st equation in 2nd, we get:

    B + C = 90

    3C + 2 + C = 90

    4C = 90 - 2

    4C = 88

    C = 88/4 = 22

    Now B = 3C + 2, so

    B = 3 (22) + 2 = 68

    Hence, B = 68 degrees and C = 22 degrees
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “The m∠B is two more than three times the measure of ∠C. If ∠B and ∠C are complementary angles, find the measures of both angles. ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers