Ask Question
30 August, 19:53

Given a polynomial f (x), if (x - 2) is a factor, what else must be true?

+3
Answers (1)
  1. 30 August, 19:56
    0
    If (x-2) is a factor of polynomial, f (x). Then, it means we can find the zeros or the solutions of the polynomial by putting f (x-2) = 0. Because, the zeros or roots of a polynomial is found by putting f (x) = 0, where x is a factor of the polynomial. Example, say f (x) = x^2-2 Which implies, f (x) = (x-2) (x+2) Here, both x-2 and x+2 are the factors of the polynomial. So, x-2 = 0, we get, x=2 is a zero of the polynomial.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Given a polynomial f (x), if (x - 2) is a factor, what else must be true? ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers