Ask Question
21 January, 19:06

How do you solve (5√2+3√5) (2√10-5)

+1
Answers (1)
  1. 21 January, 19:10
    0
    5 (sqrt (2) + sqrt (5))

    Step-by-step explanation:

    Simplify the following:

    (5 sqrt (2) + 3 sqrt (5)) (2 sqrt (10) - 5)

    Hint: | Multiply 5 sqrt (2) + 3 sqrt (5) and 2 sqrt (10) - 5 together using FOIL.

    (5 sqrt (2) + 3 sqrt (5)) (2 sqrt (10) - 5) = (5 sqrt (2)) (-5) + (5 sqrt (2)) (2 sqrt (10)) + (3 sqrt (5)) (-5) + (3 sqrt (5)) (2 sqrt (10)):

    -5*5 sqrt (2) + 5 sqrt (2) * 2 sqrt (10) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply - 5 and 5 together.

    -5*5 = - 25:

    -25 sqrt (2) + 5 sqrt (2) * 2 sqrt (10) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply 5 and 2 together.

    5*2 = 10:

    -25 sqrt (2) + 10 sqrt (2) sqrt (10) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | For a>=0, sqrt (a) sqrt (b) = sqrt (a b). Apply this to sqrt (2) sqrt (10).

    sqrt (2) sqrt (10) = sqrt (2*10):

    -25 sqrt (2) + 10 sqrt (2*10) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply 2 and 10 together.

    2*10 = 20:

    -25 sqrt (2) + 10 sqrt (20) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Simplify radicals.

    sqrt (20) = sqrt (2^2*5) = 2 sqrt (5):

    -25 sqrt (2) + 10*2 sqrt (5) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply 10 and 2 together.

    10*2 = 20:

    -25 sqrt (2) + 20 sqrt (5) - 5*3 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply - 5 and 3 together.

    -5*3 = - 15:

    -25 sqrt (2) + 20 sqrt (5) + - 15 sqrt (5) + 3 sqrt (5) * 2 sqrt (10)

    Hint: | Multiply 3 and 2 together.

    3*2 = 6:

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 6 sqrt (5) sqrt (10)

    Hint: | For a>=0, sqrt (a) sqrt (b) = sqrt (a b). Apply this to sqrt (5) sqrt (10).

    sqrt (5) sqrt (10) = sqrt (5*10):

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 6 sqrt (5*10)

    Hint: | Multiply 5 and 10 together.

    5*10 = 50:

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 6 sqrt (50)

    Hint: | Simplify radicals.

    sqrt (50) = sqrt (2*5^2) = 5 sqrt (2):

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 6*5 sqrt (2)

    Hint: | Multiply 6 and 5 together.

    6*5 = 30:

    -25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 30 sqrt (2)

    Hint: | Add the numbers in - 25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 30 sqrt (2) together.

    Add like terms. - 25 sqrt (2) + 20 sqrt (5) - 15 sqrt (5) + 30 sqrt (2) = 5 sqrt (2) + 5 sqrt (5):

    5 sqrt (2) + 5 sqrt (5)

    Hint: | Factor common terms from 5 sqrt (2) + 5 sqrt (5).

    Factor 5 out of 5 sqrt (2) + 5 sqrt (5) giving 5 (sqrt (2) + sqrt (5)):

    Answer: 5 (sqrt (2) + sqrt (5))
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “How do you solve (5√2+3√5) (2√10-5) ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers