Ask Question
6 January, 07:40

Match the integrals with the type of coordinates which make them the easiest to do. Put the letter of the coordinate system to the left of the number of the integral. 1. ∫10∫y20 1x dx dy 2. ∫∫D 1x2+y2 dA where D is: x2+y2≤4 3. ∫∫∫E z2 dV where E is: - 2≤z≤2, 1≤x2+y2≤2 4. ∫∫∫E dV where E is: x2+y2+z2≤4, x≥0, y≥0, z≥0 5. ∫∫∫E z dV where E is: 1≤x≤2, 3≤y≤4, 5≤z≤6

+1
Answers (1)
  1. 6 January, 07:53
    0
    for 1) Normal (rectangular) coordinates

    for 2) Polar coordinates

    for 3) Cylindrical coordinates

    for 4) Spherical coordinates

    for 5) Normal (rectangular) coordinates

    Step-by-step explanation:

    1. ∫10∫y20 1x dx dy 2. → Normal (rectangular) coordinates x=x, y=y → integration limits ∫ [20,1] and ∫ [10,2]

    2. ∫∫D 1x2+y2 dA., D is: x2+y2≤4 → Polar coordinates x=rcosθ, y=rsinθ → integration limits ∫ [2,0] for dr and ∫ [2π,0] for dθ

    3. ∫∫∫E z2 dV, E is: - 2≤z≤2, 1≤x2+y2≤2 → Cylindrical coordinates x=rcosθ, y=rsinθ, z=z → integration limits ∫ [2,-2] for dz, ∫ [√2,1] for dr and ∫ [2π,0] for dθ

    4. ∫∫∫E dV where E is: x2+y2+z2≤4, x≥0, y≥0, z≥0 → Spherical coordinates x=rcosθcosФ y=rsinθcosФ, z=rsinФ → integration limits ∫ [2,0] for dr,∫ [-π/2,π/2] for dθ, ∫ [π/2,0] for dθ

    5. ∫∫∫E z dV where E is: 1≤x≤2, 3≤y≤4, 5≤z≤6 → Normal (rectangular) coordinates x=x, y=y, z=z → integration limits ∫ [2,1] for dx,∫ [4,3] for dy and ∫ [6,5] for dz
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Match the integrals with the type of coordinates which make them the easiest to do. Put the letter of the coordinate system to the left of ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers