Ask Question
5 November, 18:35

What is the derivative of

y = (tanx) / (1+secx)

+4
Answers (1)
  1. 5 November, 18:52
    0
    First, the the derivative of y=lnA is y' = A' / A

    let y = (tanx) / (1+secx), implies ln y=ln [ (tanx) / (1+secx) ]

    (lny) ' = (ln [ (tanx) / (1+secx) ]) ' so y' / y = [ (tanx) / (1+secx) ]) ' / (tanx) / (1+secx)

    (tanx) / (1+secx) ' = [ (tanx) ' (1+secx) - (tanx) (1+secx) '] / (1+secx) ²

    (tanx) ' = 1 + tan²x and (1+secx) '] = secx tanx (check lesson)

    so

    (tanx) / (1+secx) ' = (1 + tan²x) (1+secx) - (tan²xsecx) / (1+secx) ²

    = (1 + secx + tan²x) / (1+secx) ²

    y' / y = [ (tanx) / (1+secx) ]) ' / (tanx) / (1+secx) =

    y' / y = [ (1 + secx + tan²x) / (1+secx) ² ] / (tanx) / (1+secx)

    y' / y = (1 + secx + tan²x) (1+secx) / (tanx) (1+secx) ²

    so y' = y. [ (1 + secx + tan²x) (1+secx) / (tanx) (1+secx) ² ]

    but y = (tanx) / (1+secx),

    y' = (tanx) / (1+secx) [ (1 + secx + tan²x) (1+secx) / (tanx) (1+secx) ² ]

    finally the derivative of (tanx) / (1+secx) is given by

    y' = (1 + secx + tan²x)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “What is the derivative of y = (tanx) / (1+secx) ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers