Ask Question
20 November, 12:43

Find sin 2x, cos 2x, and tan 2x if cos x = 3 / (sqrt (13)) and x terminates in quadrant I.

+3
Answers (1)
  1. 20 November, 12:44
    0
    sin (2x) = 12/13

    cos (2x) = 5/13

    tan (2x) = 12/5

    Step-by-step explanation:

    cos x = 3/√13, x is in the first quadrant.

    Use Pythagorean identity to find sin x.

    sin²x + cos²x = 1

    sin²x + (3/√13) ² = 1

    sin²x + 9/13 = 1

    sin²x = 4/13

    sin x = ±2/√13

    Since x is in the first quadrant, sin x = 2/√13.

    Use double angle formulas:

    sin (2x) = 2 sin x cos x

    sin (2x) = 2 (2/√13) (3/√13)

    sin (2x) = 12/13

    cos (2x) = cos²x - sin²x

    cos (2x) = (3/√13) ² - (2/√13) ²

    cos (2x) = 9/13 - 4/13

    cos (2x) = 5/13

    tan (2x) = sin (2x) / cos (2x)

    tan (2x) = (12/13) / (5/13)

    tan (2x) = 12/5
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Find sin 2x, cos 2x, and tan 2x if cos x = 3 / (sqrt (13)) and x terminates in quadrant I. ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers