Ask Question
15 December, 18:53

Solve the given differential equation. (x - a) (x - b) y' - (y -

c. = 0, where a, b, c are constants. (assume a ≠

b.)

+1
Answers (1)
  1. 15 December, 19:23
    0
    (x - a) (x - b) y' - (y - c) = 0

    Rewriting the equation we have

    (x - a) (x - b) y' = (y - c)

    (x - a) (x - b) (dy/dx) = (y - c)

    separating the variables

    dy / (y - c) = dx / ((x - a) (x - b))

    integrating both sides of the equation

    Left side:

    Ln (y-c)

    Right side:

    Simple fractions

    (1 / ((x - a) (x - b))) = (A / (x - a)) + (B / (x - b))

    A = (1 / (a-b))

    B = (1 / (b-a))

    I[dx / ((x - a) (x - b)) ] = I[ ((1 / (a-b)) dx / (x - a)) ] + I[ ((1 / (b-a)) dx / (x - b)) ]

    I[dx / ((x - a) (x - b)) ] = (1 / (a-b)) * Ln (x-a) + (1 / (b-a)) * Ln (x-b) + C

    Then the solution is

    Ln (y-c) = (1 / (a-b)) * Ln (x-a) + (1 / (b-a)) * Ln (x-b) + C

    Rewriting

    Exp[Ln (y-c) ] = exp[ (1 / (a-b)) * Ln (x-a) + (1 / (b-a)) * Ln (x-b) + C]

    y-c = exp[ (1 / (a-b)) * Ln (x-a) ]*exp[ (1 / (b-a)) * Ln (x-b) ]*exp[C]

    y-c=[ (x-a) ^ (1 / (a-b)) ]*[ (x-b) ^ (1 / (b-a)) ]*C’

    final answer:

    y=C’*[ (x-a) ^ (1 / (a-b)) ]*[ (x-b) ^ (1 / (b-a)) ] * + c
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Solve the given differential equation. (x - a) (x - b) y' - (y - c. = 0, where a, b, c are constants. (assume a ≠ b.) ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers