Ask Question
Yesterday, 21:33

Outside temperatures over the course of a day can be modeled as a sinusoidal function. Suppose the high temperature of105°Foccurs at 5PM and the average temperature for the day is85°F. Find the temperature, to the nearest degree, at 9AM.

+5
Answers (1)
  1. Yesterday, 21:47
    0
    The temperature at 9AM = 75°F

    Step-by-step explanation:

    Consider D (t) be the temperature in Fahrenheit at time t, where t is measured in hours since midnight. It knows when the maximum temperature occurs. Then it can create a model using a cosine curve.

    Vertical shift, D = 85°F

    Amplitude, A = (105-85) °F = 20°F

    Horizontal stretch factor, B = 2π/24 = π/12

    Horizontal shift = - (12+5) = - 17

    Using the information, we have this model

    D (t) = 20cos [π/12 (t-17) ] + 85

    D (9) = 20cos [π/12 (9-17) ] + 85

    = 20cos [-2π/3] + 85

    = - 20 x 1/2 + 85

    = 75°
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Outside temperatures over the course of a day can be modeled as a sinusoidal function. Suppose the high temperature of105°Foccurs at 5PM ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers