Ask Question
13 November, 05:54

Prove

that

2 cos (A + 45°) cos (B-45°) = cos 2A

+1
Answers (1)
  1. 13 November, 06:03
    0
    Step-by-step explanation:

    2 cos (A+45) cos (B-45)

    =2[cos A cos 45-sin A sin 45][cos B cos 45+sin B sin 45]

    =2[cos A * 1/√2-sin A * 1/√2][cos B*1/√2+sin B*1/√2]

    =2[1/√2 (cos A-sin A) ][1/√2 (cos B-sin B]

    =2*1/√2*1/√2 (cos A-sin A) (cos B+sin B)

    =cosA cos B+cos A sin B-sin A cos B-sin A sin B

    =cos A cos B-sin A sin B - (sin A cos B-cos A sin B)

    =cos (A+B) - sin (A-B)

    i think there should be A in place of B.

    then

    =cos (A+A) - sin (A-A)

    =cos 2A-sin 0

    =cos 2A

    as sin 0=0
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Prove that 2 cos (A + 45°) cos (B-45°) = cos 2A ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers