Ask Question
22 January, 02:20

Use a sum or difference identity to find an exact value of sin 2pi over 12

+5
Answers (1)
  1. 22 January, 02:48
    0
    5pi/12 = 3pi/12 + 2pi/12 = pi/4 + pi/6

    sin (a + b) = > sin (a) cos (b) + sin (b) cos (a)

    cos (a + b) = > cos (a) cos (b) - sin (a) sin (b)

    sin (5pi/12) = >

    sin (3pi/12 + 2pi/12) = >

    sin (pi/4 + pi/6) = >

    sin (pi/4) cos (pi/6) + sin (pi/6) cos (pi/4) = >

    (sqrt (2) / 2) * (sqrt (3) / 2) + (1/2) * (sqrt (2) / 2) = >

    (sqrt (2) / 4) * (1 + sqrt (3))

    cos (5pi/12) = >

    cos (pi/4 + pi/6) = >

    cos (pi/4) cos (pi/6) - sin (pi/4) sin (pi/6) = >

    (sqrt (2) / 2) * (sqrt (3) / 2) - (sqrt (2) / 2) * (1/2) = >

    (sqrt (2) / 4) * (sqrt (3) - 1)

    tan (5pi/12) = >

    sin (5pi/12) / cos (5pi/12) = >

    (sqrt (2) / 4) * (sqrt (3) + 1) / ((sqrt (2) / 4) * (sqrt (3) - 1)) = >

    (sqrt (3) + 1) / (sqrt (3) - 1) = >

    (sqrt (3) + 1) ^2 / (3 - 1) = >

    (3 + 2 * sqrt (3) + 1) / 2 = >

    (4 + 2 * sqrt (3)) / 2 = >

    2 + sqrt (3)

    csc (5pi/12) = >

    1 / sin (5pi/12) = >

    4 / (sqrt (2) * (sqrt (3) + 1)) = >

    4 * sqrt (2) * (sqrt (3) - 1)) / (2 * (3 - 1)) = >

    4 * sqrt (2) * (sqrt (3) - 1)) / (2 * 2) = >

    sqrt (2) * (sqrt (3) - 1)

    sec (5pi/12) = >

    1/cos (5pi/12) = >

    4 / (sqrt (2) * (sqrt (3) - 1)) = >

    4 * sqrt (2) * (sqrt (3) + 1)) / (2 * (3 - 1)) = >

    sqrt (2) * (sqrt (3) + 1)

    cot (5pi/12) = >

    1/tan (5pi/12) = >

    1 / (2 + sqrt (3)) = >

    (2 - sqrt (3)) / (4 - 3) = >

    2 - sqrt (3)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Use a sum or difference identity to find an exact value of sin 2pi over 12 ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers