Ask Question
10 February, 01:45

On a sine function y = Asin (Bx) + C, the maximum value is 19 and the minimum value is - 5. Which of the following must be the value of |A| - C?

+1
Answers (1)
  1. 10 February, 02:07
    0
    |A| - C = 5

    Step-by-step explanation:

    The maximum value that a sine function can have is 1, and the minimum value is - 1.

    With this information, to find the minimum value of y, we can use sin (Bx) = - 1, and to find the maximum value, we can use sin (Bx) = 1. Then, we have that:

    19 = A + C

    -5 = - A + C

    Summing both equations, we have:

    14 = 2C

    C = 7

    Now, to find the value of A, we can use the first equation:

    19 = A + C

    19 = A + 7

    A = 12

    So the value of |A| - C is:

    |12| - 7 = 12 - 7 = 5
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “On a sine function y = Asin (Bx) + C, the maximum value is 19 and the minimum value is - 5. Which of the following must be the value of |A| ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers