Ask Question
6 December, 08:00

Prove that : cos10° - sin10° / sin10° + cos10° = tan35°

Answers (1)
  1. 6 December, 08:11
    0
    Step-by-step explanation:

    (cos 10° - sin 10°) / (cos 10° + sin 10°)

    Rewrite 10° as 45° - 35°.

    (cos (45° - 35°) - sin (45° - 35°)) / (cos (45° - 35°) + sin (45° - 35°))

    Use angle difference formulas.

    (cos 45° cos 35° + sin 45° sin 35° - sin 45° cos 35° + cos 45° sin 35°) / (cos 45° cos 35° + sin 45° sin 35° + sin 45° cos 35° - cos 45° sin 35°)

    sin 45° = cos 45°, so dividing:

    (cos 35° + sin 35° - cos 35° + sin 35°) / (cos 35° + sin 35° + cos 35° - sin 35°)

    Combining like terms:

    (2 sin 35°) / (2 cos 35°)

    Dividing:

    tan 35°
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Prove that : cos10° - sin10° / sin10° + cos10° = tan35° ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers
Sign In
Ask Question