Ask Question
3 October, 16:01

Identify the initial amount a and the growth factor b in the exponential function. g (x) = 20 • 2x

+1
Answers (1)
  1. 3 October, 16:16
    0
    Initial amount: 20

    Growth factor: The amount doubles for every integer increase of x

    Step-by-step explanation:

    I think the equation should be g (x) = 20 (2^x) for it to be exponential.

    The general form of an exponential equation is g (x) = a (b^x), where a is the initial amount when x = 0, and b is the base, or growth factor.

    We can see the amount double by evaluating a few value ...

    g (0) = 20 (2^0) = 20 (1) = 20 (initial amount)

    g (1) = 20 (2^1) = 20 (2) = 40

    g (2) = 20 (2^2) = 20 (4) = 80

    g (3) = 20 (2^3) = 20 (8) = 160

    This pattern will continue on
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Identify the initial amount a and the growth factor b in the exponential function. g (x) = 20 • 2x ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers