Ask Question

How many terms are in the arithmetic sequence 1313, 1616, 1919, ..., 7070, 7373?

+1
Answers (1)
  1. 3 May, 20:31
    0
    The formula in getting the arithmetic sequence:

    an = a1 + (n - 1) d.

    We can substitute the values in order for us to know how many terms the sequence has.

    an = 7373

    a1 = 1313

    d = 303

    an = a1 + (n - 1) d

    7373 = 1313 + (n-1) 303

    7373 = 1313 + 303n - 303

    -303n = 1313 - 303 - 7373

    303n = - 1313 + 303 + 7373

    303n = 6363

    n = 21

    So, there are 21 terms in the sequence given.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “How many terms are in the arithmetic sequence 1313, 1616, 1919, ..., 7070, 7373? ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers