Ask Question
10 March, 17:00

Use sum identities to derive one double angle identity for cosine

Hint: cos 2 Ф = cos (Ф+Ф)

Ф=theta

+4
Answers (1)
  1. 10 March, 17:12
    0
    cos (2 Ф) = cos² (Ф) - sin² (Ф) cos (2 Ф) = 1 - 2sin² (Ф) cos (2 Ф) = 2cos² (Ф) - 1

    Step-by-step explanation:

    The angle sum formula for cosine is ...

    cos (α+β) = cos (α) cos (β) - sin (α) sin (β)

    When we have α = β = Ф, this becomes ...

    cos (Ф+Ф) = cos (Ф) cos (Ф) - sin (Ф) sin (Ф)

    cos (2 Ф) = cos² (Ф) - sin² (Ф)

    The "Pythagorean identity" can be used to write this in terms of sine or cosine.

    cos (2 Ф) = (1 - sin² (Ф)) - sin² (Ф)

    cos (2 Ф) = 1 - 2sin² (Ф)

    or

    cos (2 Ф) = cos² (Ф) - (1 - cos² (Ф))

    cos (2 Ф) = 2cos² (Ф) - 1
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Use sum identities to derive one double angle identity for cosine Hint: cos 2 Ф = cos (Ф+Ф) Ф=theta ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers