Ask Question
17 June, 20:12

Prove that

1 / cos (x) - cos (x) = sin (x) ∙ tan (x) for x ≠?2 + k, for all integers k.

+4
Answers (1)
  1. 17 June, 20:25
    0
    Answer: From the given expression we can get the fundamental trigonometry identity

    Step-by-step explanation:

    1 : cos (*) - cos (*) = sin (*) * tan (*) ⇒

    [1 : cos (*) ] - cos (*) = sin (*) * sin (*) / cos (*)

    1 / cos (*) - cos (*) = sin² (*) / cos (*) ⇒cos (*) / cos (*) - cos² (*) = sin² (*)

    1 - cos² (*) = sin² (*)

    1 = cos² (*) + sin² (*) fundamental trigonometry identity
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Prove that 1 / cos (x) - cos (x) = sin (x) ∙ tan (x) for x ≠?2 + k, for all integers k. ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers