Ask Question
16 September, 14:29

Find [g * h] (x) and [h*g] (x). g (x) = 5x h (x) = - 10x3 + 13x2 - 3x + 3

[g * h] (x) = - 50x3 + 65x2 - 15x + 15

[h*g] (x) = - 1250x3 + 325x2 - 15x + 15

[g * h] (x) = - 50x4 + 65x3 - 15x2 + 15x

[g * h] (x) = - 1250x4 + 325x3 - 15x2 + 3x

[g * h] (x) = - 50x3 + 65x2 - 15x + 15

[h*g] (x) = - 1250x3 + 325x2 - 15x + 3

[g * h] (x) = 50x3 + 65x2 - 15x + 15

[h*g] (x) = - 1250x3 + 325x2 - 15x + 3

+4
Answers (2)
  1. 16 September, 14:32
    0
    (g ο h) (x) = - 50x³ + 65x² - 15x + 15

    (h ο g) (x) = - 1250x³ + 325x² - 15x + 3 ⇒ 3rd answer

    Step-by-step explanation:

    * Lets explain the composite function

    - A composite function is a function that depends on another function

    - A composite function is created when one function is substituted into

    another function

    - Example:

    # (f ο g) (x) is the composite function that is formed when g (x) is

    substituted for x in f (x).

    * Now lets solve the problem

    ∵ g (x) = 5x

    ∵ h (x) = - 10x³ + 13x² - 3x + 3

    - To find (g ο h) (x) replace x in g by h (x)

    ∴ Replace x by - 10x³ + 13x² - 3x + 3

    ∴ (g ο h) (x) = 5 (-10x³ + 13x² - 3x + 3)

    ∴ (g ο h) (x) = - 50x³ + 65x² - 15x + 15

    - To find (h ο g) (x) replace each x in - 10x³ + 13x² - 3x + 3 by g (x)

    ∴ Replace each x in - 10x³ + 13x² - 3x + 3 by 5x

    ∴ (h ο g) (x) = - 10 (5x) ³ + 13 (5x) ² - 3 (5x) + 3)

    ∴ (h ο g) (x) = - 10 (125x³) + 13 (25x²) - 15x + 3

    ∴ (h ο g) (x) = - 1250x³ + 325x² - 15x + 3

    * (g ο h) (x) = - 50x³ + 65x² - 15x + 15

    (h ο g) (x) = - 1250x³ + 325x² - 15x + 3
  2. 16 September, 14:35
    0
    (g ο h) (x) = - 50x³ + 65x² - 15x + 15

    (h ο g) (x) = - 1250x³ + 325x² - 15x + 3
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Find [g * h] (x) and [h*g] (x). g (x) = 5x h (x) = - 10x3 + 13x2 - 3x + 3 [g * h] (x) = - 50x3 + 65x2 - 15x + 15 [h*g] (x) = - 1250x3 + ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers