Ask Question
16 May, 19:37

In 1935, Harvard linguist George Zipf I wanted out that the frequency of the Kth most frequent word in a language is roughly proportional to 1/K. This implies that the second most frequent word in a language has a frequency of one half that of the most frequent word, the third most frequent word has a frequency of one third that of the most frequent word, and so on. A distribution that follows this rule is said to obay Zipf's law.

Zipf's lawhas been observed not only in word distributions, but in other phenomenona as well, such as populations in a city.

The frequency of the third most frequent word in the Brown corpus is ___?___ that of the most frequent word.

A. 41%

B. 34%

C. 33%

D. 50%

+1
Answers (1)
  1. 16 May, 19:45
    0
    C. 33%

    Step-by-step explanation:

    The frequency of the Kth most frequent word in a language is roughly proportional to 1/K of the most frequent word.

    So the 2nd most frequent word is roughly proportional to 1/2 of the most frequent word

    The 3rd most frequent word is roughly proportional to 1/3 = 0.333 = 0.33 of the most frequent word.

    0.333 is rounded to 0.33 = 33%.

    If it had been 0.335 or higher, it would be round to 0.34 = 34%.

    So the correct answer is:

    C. 33%
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “In 1935, Harvard linguist George Zipf I wanted out that the frequency of the Kth most frequent word in a language is roughly proportional ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers