Ask Question
20 September, 22:27

Use cos (2x) = cos2 (x) - sin2 (x) to establish the following formulas.

a. cos2 (x) = 1 + cos (2x) / 2

b. sin2 (x) = 1 - cos (2x) / 2

+4
Answers (1)
  1. 20 September, 22:33
    0
    a. cos2 (x) = 1 + cos (2x) / 2

    b. sin2 (x) = 1 - cos (2x) / 2

    Step-by-step explanation:

    From cos (2x) = cos2 (x) - sin2 (x)

    a. cos2 (x) = cos (2x) + sin2 (x)

    but sin2 (x) = 1 - cos2 (x)

    Therefore,

    cos2 (x) = cos (2x) + 1 - cos2 (x)

    cos2 (x) + cos2 (x) = cos (2x) + 1

    2 cos2 (x) = cos (2x) + 1

    cos2 (x) = (cos (2x) + 1) / 2

    Hence cos2 (x) = 1 + cos (2x) / 2

    b. sin2 (x) = 1 - cos (2x) / 2

    cos2 (x) = 1 - sin2 (x)

    Therefore,

    sin2 (x) = cos2 (x) - cos (2x)

    sin2 (x) = 1 - sin2 (x) - cos (2x)

    2sin2 (x) = 1 - cos (2x)

    sin2 (x) = (1 - cos (2x)) / 2

    Hence the proof.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Use cos (2x) = cos2 (x) - sin2 (x) to establish the following formulas. a. cos2 (x) = 1 + cos (2x) / 2 b. sin2 (x) = 1 - cos (2x) / 2 ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers