Ask Question
2 June, 15:43

Prove this identity using the product-to-sum identity for sin ... sin^2 x = (1-cos (2x)) / (2)

+2
Answers (1)
  1. 2 June, 15:57
    0
    sin²x = (1 - cos2x) / 2 ⇒ proved down

    Step-by-step explanation:

    ∵ sin²x = (sinx) (sinx) ⇒ add and subtract (cosx) (cosx)

    (sinx) (sinx) + (cosx) (cosx) - (cosx) (cosx)

    ∵ (cosx) (cosx) - (sinx) (sinx) = cos (x + x) = cos2x

    ∴ - cos2x + cos²x = - cos2x + (1 - sin²x)

    ∴ 1 - cos2x - sin²x = (1 - cos2x) / 2 ⇒ equality of the two sides

    ∴ (1 - cos2x) - 1/2 (1 - cos2x) = sin²x

    ∴ 1/2 (1 - cos2x) = sin²x

    ∴ sin²x = (1 - cos2x) / 2
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Prove this identity using the product-to-sum identity for sin ... sin^2 x = (1-cos (2x)) / (2) ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers