Ask Question
20 January, 22:31

Solve using linear combination. 8x+14y=4 - 6x-7y+-10

+3
Answers (1)
  1. 20 January, 22:35
    0
    It's best to write the two equations as a vertical column:

    8x+14y=4

    -6x-7y = - 10

    Note that if we multiply the 2nd equation by 2, we get - 12x - 14y = - 20. The reason for wanting this version of the 2nd equation is that its - 14y cancels the + 14y in the first equation:

    -12x - 14y = - 20

    8x+14y=4

    Combine these equations, column by column. We get - 4x = - 16, which results in x = 4. Now find y by subbing 4 for x in either given equation. If we use the first equation, we get 8 (4) + 14y = 4, or 32 + 14y = 4, or 14y = - 28. Then y = - 2.

    The solution to this system of linear equations is thus (4,-2).

    Check this result by substitution of these coordinates into - 6 (4) - 7y = - 20:

    -24 - 7 (-2) = - 10. Is this true or not?

    -24 + 14 = - 10 is true. Thus, (4,-2) is the desired solution.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Solve using linear combination. 8x+14y=4 - 6x-7y+-10 ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers