Ask Question
5 April, 14:48

Which statement is correct?

(2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) less-than StartFraction 7.69 times 10 Superscript negative 2 Baseline Over 2.3 times 10 Superscript negative 5 Baseline EndFraction

(2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) greater-than-or-equal-to StartFraction 7.69 times 10 Superscript negative 2 Baseline Over 2.3 times 10 Superscript negative 5 Baseline EndFraction

(2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) greater-than StartFraction 7.69 times 10 Superscript negative 2 Baseline Over 2.3 times 10 Superscript negative 5 Baseline EndFraction

(2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) = StartFraction 7.69 times 10 Superscript negative 2 Baseline Over 2.3 times 10 Superscript negative 5 Baseline EndFraction

+3
Answers (1)
  1. 5 April, 15:15
    0
    C

    Step-by-step explanation:

    (2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) is rounded to 3.9

    StartFraction 7.69 times 10 Superscript negative 2 Baseline Over 2.3 times 10 Superscript negative 5 Baseline EndFraction is rounded to 3.3

    3.9 > 3.3
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Which statement is correct? (2.06 times 10 Superscript negative 2 Baseline) (1.88 times 10 Superscript negative 1 Baseline) less-than ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers