Ask Question
9 November, 07:13

Lim x-->0 ((sqrt (ax+b) - 2) / x) = 1 show steps ...

+5
Answers (1)
  1. 9 November, 07:18
    0
    Lim x→0 (√ (ax+b) - 2) / x=1

    You want to know the value of "a" and "b"

    lim x→0 (√ (ax+b) - 2) / x = (√ (0+b) - 2) / 0 = (√b - 2) / 0;

    Then if (√b - 2) / 0=1; the numerator must be "0"

    (√b-2) = 0

    √b=2

    (√b) ²=2²

    b=4

    It is necessary the numerator must be "0", if the denominator is "0" and the result is equal a number.

    Therefore:

    lim (√ (ax+4) - 2) / x=1

    x⇒0

    I imagine you know Taylor Series.

    √ (ax+4) = (4 (1+ax/4)) ¹/²=2 (1+ax/4) ¹/²

    Remember:

    (1/2)

    (1+x) ᵃ = Σ (a) x^a

    In our case:

    (1/2) (1/2) (1/2)

    (1+ax/4) ¹/² = (0) (ax/4) ⁰ + (1) (ax/4) ¹ + (2) (ax/4) ² + ...

    =1 + (1/2) ax/4 + - 1/8 (ax/4) ² + ...

    =1+ax/8-a²x²/128 + ...

    Therefore:

    lim (√ (ax+4) - 2) / x=lim [2 (1+ax/8-a²x²/128 + ...) - 2]/x=

    x⇒0 x⇒0

    lim [ (2+ax/4-a²x²/64 + ...) - 2]/x=

    x⇒0

    lim (ax/4-a²x²/64 + ...) / x=

    x⇒0

    lim x (a/4-a²x/64 + ...) / x=

    x⇒0

    lim (a/4-a²x/64 + ...) = (a/4-0-0-0 - ...) = 4/a

    x⇒0

    Because:

    lim (√ (ax+4) - 2) / x=1

    x⇒0

    Then:

    4/a=1 ⇒ a=4

    Answer: a=4; b=4
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Lim x-->0 ((sqrt (ax+b) - 2) / x) = 1 show steps ... ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers