Ask Question
2 February, 23:09

The radius of the circle x^2+y^2 + px+6y-3=0 is 4. find the possible values of p

+4
Answers (2)
  1. 2 February, 23:11
    0
    Here, the given equation is,

    x^2+y^2+px+6y-3=0

    By copairing it with x^2+y^2+2gx+2fy+c=0, we get,

    2g=p or, g=p/2

    2f=6 or, f=3

    c=-3

    now the radius is,

    r^2=g^2+f^2-c

    or, 4^2 = (p/2) ^2 + 3^2 - (-3)

    or, 16 = p^2/4 + 9+3

    or, 16-9-3=p^2/4

    or p^2/4=4

    or, p^2=4*4

    or p^2=4^2

    or p=4

    therefore the rewuired value of p is 4.
  2. 2 February, 23:20
    0
    Possible values are 4 and - 4.

    Step-by-step explanation:

    First complete the square on the x and y terms:

    x^2 + y^2 + px + 6y - 3 = 0

    (x + 0.5p) ^2 - 0.25p^2 + (y + 3) ^2 - 9 - 3 = 0

    (x + 0.5p) ^2 + (y + 3) ^2 = 12 + 0.25p^2

    This is the standard form of the equation of the circle where the right side = radius^2 so we can write:

    12 + 0.25p^2 = 4^2

    0.25p^2 = 16 - 12 = 4

    Taking square roots:-

    0.5p = + / - 2

    p = 2 / 0.5, - 2 / 0.5

    p = 4, - 4.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “The radius of the circle x^2+y^2 + px+6y-3=0 is 4. find the possible values of p ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers