Ask Question
6 November, 22:09

Prove that 2sec^2x-2sec^2xsinx-sin^2x-cos^2x=1.

+1
Answers (1)
  1. 6 November, 22:33
    0
    2sec² (x) - 2sec² (x) sin (x) - sin² (x) - cos² (x) = 1

    2sec² (x) - 2sec² (x) sin (x) - sin² (x) - cos² (x) = sin² (x) + cos² (x)

    + sin² (x) + cos² (x) + sin² (x) + cos² (x)

    2sec² (x) - 2sec² (x) sin (x) = 2sin² (x) + 2cos² (x)

    2[sec² (x) ] - 2[sec² (x) sin (x) ] = 2[sin² (x) + cos² (x) ]

    2[sec² (x) - sec² (x) sin (x) ] = 2 (1)

    2 2

    sec² (x) - sec² (x) sin (x) = 1

    sec² (x) sec² (x)

    1 - sin (x) = cos² (x)

    sin² (x) + cos² (x) - sin (x) = cos² (x)

    - cos² (x) - cos² (x)

    sin² (x) - sin (x) = 0

    sin (x) [sin (x) ] - sin (x) [1] = 0

    sin (x) [sin (x) - 1] = 0

    sin (x) = 0 or sin (x) - 1 = 0

    sin⁻¹[sin (x) ] = sin⁻¹ (0) + 1 + 1

    x = 0 sin (x) = 1

    sin⁻¹[sin (x) ] = sin⁻¹ (1)

    x ≈ 1.5707

    The solution is actually equal to zero.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Prove that 2sec^2x-2sec^2xsinx-sin^2x-cos^2x=1. ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers