Ask Question
25 September, 06:28

Evaluate ∫ e3x cosh 2x dx A. 1 / e5x+1/ex+C 10 2 B. 1 / e3x + 1 / x + C 42 C. 1 / e5x + 1 / 10 5 x + C D. 1 / e5x + 1 / ex + C 22

+4
Answers (1)
  1. 25 September, 06:57
    0
    Sh (2x) = (e^2x + e^-2x) / 2

    Thus the integral becomes

    Int[e^3x * (e^2x + e^-2x) / 2] = Int[ (e^5x + e^x) / 2]

    = e^5x/10 + e^x/2 + C

    = (1/10) (e^5x) + (1/2) (e^x) + C
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Evaluate ∫ e3x cosh 2x dx A. 1 / e5x+1/ex+C 10 2 B. 1 / e3x + 1 / x + C 42 C. 1 / e5x + 1 / 10 5 x + C D. 1 / e5x + 1 / ex + C 22 ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers