Ask Question
26 September, 06:08

Two exponential functions are shown in the table. A 3-column table has 5 rows. The first column is labeled x with entries 2, 1, 0, negative 1, negative 2. The second column is labeled f (x) = 2 Superscript x Baseline with entries 4, 2, 1, one-half, one-fourth. The third column is labeled g (x) = (one-half) superscript x Baseline with entries one-fourth, one-half, 1, 2, 4. Which conclusion about f (x) and g (x) can be drawn from the table? The functions f (x) and g (x) are reflections over the x-axis. The functions f (x) and g (x) are reflections over the y-axis. The function f (x) is a decreasing function, and g (x) is an increasing function. The function f (x) has a greater initial value than g (x).

+2
Answers (2)
  1. 26 September, 06:13
    0
    B

    Step-by-step explanation:Put my answer the brainliest
  2. 26 September, 06:19
    0
    B. The functions f (x) and g (x) are reflections over the y-axis.

    Step-by-step explanation:

    From the information given the table appears as;

    x f (x) = 2^x g (x) = 0.5^x

    2 4 0.25

    1 2 0.5

    0 1 1

    -1 0.5 2

    -2 0.25 4

    Plotting the two graphs to view the trends;

    In the graph of f (x) = 2^x against x you notice a curve with increasing positive slope.

    In the graph of g (x) = 0.5^x against x you notice a curve with a negative slope that is increasing.

    In combining both graphs you notice that f (x) and g (x) are reflections over the y-axis.

    Correct answer is; The functions f (x) and g (x) are reflections over the y-axis.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Two exponential functions are shown in the table. A 3-column table has 5 rows. The first column is labeled x with entries 2, 1, 0, negative ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers