Ask Question
20 August, 04:49

Solve the system by the substitution method.

2x-y = - 24

x+7y = 3

+1
Answers (1)
  1. 20 August, 05:11
    0
    2x - y = - 24

    x + 7y = 3

    Solve one equation for a variable and plug the resulting value into the second equation.

    x + 7y = 3 Subtract 7y from both sides

    x = - 7y + 3

    Now, plug that x-value into the x of the first equation.

    2x - y = - 24 Plug in the x-value

    2 (-7y + 3) - y = 24 Use the Distributive Property

    -14y + 6 - y = - 24 Combine like terms (-14y and - y)

    -15y + 6 = - 24 Subtract 6 from both sides

    -15y = - 30 Divide both sides by 15

    y = 2

    Next, plug the y-value back into the second equation.

    x + 7y = 3 Plug in the y-value

    x + 7 (2) = 3 Multiply

    x + 14 = 3 Subtract 14 from both sides

    x = - 11

    y = 2 and x = - 11
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Solve the system by the substitution method. 2x-y = - 24 x+7y = 3 ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers