Ask Question
6 June, 16:45

Math

If A+B+C=pi then prove that cos3A. cos3B+cos3B. cos3C+cos3C. cos3A=1

+1
Answers (1)
  1. 6 June, 16:49
    0
    Step-by-step explanation:

    Given:

    A+B+C = π

    3A+3B+3C = 3π

    cos (3A+3B) = - cos3C

    cos3A. cos3B-sin3A. sin3B = - cos3C

    cos3A. cos3B = sin3A. sin3B - cos3C (1)

    similarly apply for the other two angles, we have:

    cos3B. cos3C = sin3B. sin3C - cos3A (2) cos3C. cos3A = sin3C. sin3A - cos3B (3)

    Grouping three equations, (1) + (2) + (3), we have:

    cos3A. cos3B+cos3B. cos3C+cos3C. cos3A = sin3A. sin3B + sin3B. sin3C + sin3C. sin3A - (cos3A + cos3B + cos3C)

    = 1

    Hope it can find you well.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Math If A+B+C=pi then prove that cos3A. cos3B+cos3B. cos3C+cos3C. cos3A=1 ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers