Ask Question
11 May, 20:36

Factor completely 3x4 - 30x3 + 75x2. 3 (x - 5) 2 3x2 (x - 5) 2 3x2 (x2 - 10x + 25) 3x2 (x + 5) (x - 5)

+1
Answers (2)
  1. 11 May, 20:47
    0
    3x^2 (x-5) ^2

    Step-by-step explanation:

    3x^4 - 30x^3 + 75x^2

    We can factor out a 3x^2 from each term

    3x^2 (x^2 - 10x + 25)

    The term inside the parentheses can be factored

    What 2 numbers multiply to 25 and add to - 10

    -5*-5 = 25

    -5+-5 = - 10

    3x^2 (x-5) (x-5)

    3x^2 (x-5) ^2
  2. 11 May, 20:59
    0
    The complete factorization is 3x² (x - 5) ² ⇒ 2nd answer

    Step-by-step explanation:

    * Lets revise how to factorize a trinomial

    - Find the greatest common factor of the coefficients of the three terms

    ∵ The trinomial is 3x^4 - 30x³ + 75x²

    - The greatest common factor of 3, 30, 75 is 3

    ∵ 3 : 3 = 1

    ∵ 30 : 3 = 10

    ∵ 75 : 3 = 25

    ∴ 3x^4 - 30x³ + 75x² = 3 (x^4 - 10x³ + 25x²)

    - Now lets find the greatest common factor of the variable x

    ∵ x² is the greatest common factor of the three terms

    ∵ x^4 : x² = x²

    ∵ 10x³ : x² = 10x

    ∵ 25x² : x² = 25

    ∴ 3 (x^4 - 10x³ + 25x²) = 3x² (x² - 10x + 25)

    - Lets factorize (x² - 10x + 25)

    ∵ √x² = x

    ∵ √25 = 5

    ∵ 2 * 5 * x = 10x

    ∴ x² - 10x + 25 is a completing square

    ∴ (x² - 10x + 25) = (x - 5) ²

    ∴ 3x² (x² - 10x + 25) = 3x² (x - 5) ²

    * The complete factorization is 3x² (x - 5) ²
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Factor completely 3x4 - 30x3 + 75x2. 3 (x - 5) 2 3x2 (x - 5) 2 3x2 (x2 - 10x + 25) 3x2 (x + 5) (x - 5) ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers