Sign In
Ask Question
Bryce Bell
Mathematics
12 June, 14:14
Can someone explain the chain rule?
+5
Answers (
1
)
Deangelo Rivera
12 June, 14:43
0
Since f (x) is a polynomial function, we know from previous pages that f' (x) exists. Naturally one may ask for an explicit formula for it. A longer way to do this is to develop (1+x2) 10 using the Binomial Formula and then take the derivative. Of course, it is possible to do this, but it won't be much fun. But what if we have to deal with (1+x2) 100! Then I hope you agree that the Binomial Formula is not the way to go anymore. So what do we do? The answer is given by the Chain Rule. Before we discuss the Chain Rule formula, let me give another example. Example. Let us find the derivative of $f (x) = / sin (2x) $. One way to do that is through some trigonometric identities. Indeed, we have
/begin{displaymath}/sin (2x) = 2/sin (x) / cos (x) / cdot/end{displaymath}
So we will use the product formula to get / begin{displaymath}/Big (/sin (2x) / Big) ' = 2 / Big (/sin' (x) / cos (x) + / sin (x) / cos' (x) / Big) / end{displaymath}
which implies / begin{displaymath}/Big (/sin (2x) / Big) ' = 2 / Big (/cos^2 (x) - / sin^2 (x) / Big) / cdot/end{displaymath}
Using the trigonometric formula $/cos (2x) = / cos^2 (x) - / sin^2 (x) $, we get / begin{displaymath}/Big (/sin (2x) / Big) ' = 2 / cos (2x) / cdot/end{displaymath}
Once this is done, you may ask about the derivative of $/sin (5x) $? The answer can be found using similar trigonometric identities, but the calculations are not as easy as before. Again we will see how the Chain Rule formula will answer this question in an elegant way. In both examples, the function f (x) may be viewed as:
/begin{displaymath}f (x) = h/Big (g (x) / Big) / end{displaymath}
where g (x) = 1+x2 and h (x) = x10 in the first example, and $h (x) = / sin (x) $ and g (x) = 2x in the second. We say that f (x) is the composition of the functions g (x) and h (x) and write / begin{displaymath}f (x) = h / circ g (x)./end{displaymath}
The derivative of the composition is given by the formula / begin{displaymath}/Big (f / circ g (x) / Big) ' = g' (x) f' (g (x))./end{displaymath}
Another way to write this formula is / begin{displaymath}/frac{dy}{dx} = / frac{dy}{du} / frac{du}{dx}/end{displaymath}
where $y = f / circ g (x) = f (u) $ and u = g (x). This second formulation (due to Leibniz) is easier to remember and is the formulation used almost exclusively by physicists. Example. Let us find the derivative of
/begin{displaymath}f (x) = (1+x^2) ^{100}/cdot/end{displaymath}
We have $f (x) = h/circ g (x) $, where g (x) = 1+x2 and h (x) = x100. Then the Chain rule implies that f' (x) exists, which we knew since it is a polynomial function, and / begin{displaymath}f' (x) = 2x / cdot / Big[100 (1+x^2) ^{99}/Big] = 200 x (1+x^2) ^{99}/;./end{displaymath}
Example. Let us find the derivative of
/begin{displaymath}f (x) = / sin (5x) / cdot/end{displaymath}
We have $f (x) = h/circ g (x) $, where g (x) = 5x and $h (x) = / sin (x) $. Then the Chain rule implies that f' (x) exists and / begin{displaymath}f' (x) = 5/cdot / Big[/cos (5x) / Big] = 5 / cos (5x) / cdot/end{displaymath}
In fact, this is a particular case of the following formula
/begin{displaymath}/Big[ f (ax+b) / Big]' = a f' (ax+b) / cdot/end{displaymath} By the way this is not vandalism since i changed it up a little message me if u need link
Comment
Complaint
Link
Know the Answer?
Answer
Not Sure About the Answer?
Find an answer to your question 👍
“Can someone explain the chain rule? ...”
in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers
You Might be Interested in
Evaluate the expression 3.5x when x is 2.
Answers (1)
Bd = 4 cm dab ad = 3 cmcm. Cd?
Answers (1)
Absolute value of 6 - 6
Answers (2)
In Chelsea's group, there are three boys and six girls. Write a fraction, in simplest form, to represent the amount of boys in the group.
Answers (2)
What is the answer for 3/7 plus 1/2
Answers (1)
New Questions in Mathematics
How do you factor out the trinomial: 6x²+14x+4
Answers (1)
What will be the shape of the model for 10000
Answers (1)
Expand the expression In (2x^3/5y)
Answers (1)
Dr. Casey has a cylindrical beaker he fills with about 113 cubic inches of hydrochloric acid. The hydrochloric avid has a height of 4 inches in the beaker. To the nearest inch, what is the diameter of the hydrochloric acid in Casey's container?
Answers (1)
In circle O, SU is a diameter. What is m? 100° 108° 130° 160°
Answers (1)
Home
»
Mathematics
» Can someone explain the chain rule?
Sign In
Sign Up
Forgot Password?