Ask Question

Using the expansions of cos (3x - x) and cos (3x + x), prove that

1/2 (cos 2x - cos 4x) ≡ sin 3x sin x.

+3
Answers (1)
  1. 7 March, 11:55
    0
    Cos (A - B) = cos A cos B + sin A sin B

    cos (A + B) = cos A cos B - sin A sin B

    cos 2x = cos (3x - x) = cos 3x cos x + sin 3x sin x

    cos 4x = cos (3x + x) = cos 3x cos x - sin 3x sin x

    1/2 (cos 2x - cos 4x) = 1/2 (cos 3x cos x + sin 3x sin x - cos 3x cos x + sin 3x sin x) = 1/2 (2 sin 3x sin x) = sin 3x sin x.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Using the expansions of cos (3x - x) and cos (3x + x), prove that 1/2 (cos 2x - cos 4x) ≡ sin 3x sin x. ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers