Ask Question
20 April, 19:10

Verify each identity:

(tan x + tan y) / (1 - tan x tan y) = (sin x cos y + cos x sin y) / (cos x cos y - sin x sin y)

+3
Answers (2)
  1. 20 April, 19:26
    0
    Using double angle identity in trigonometry, sin x cos y + cos x sin y is equal to the sum of x and y that is the angle inside the sine function notation. On the other hand, cos x cos y - sin x sin y is equal to cos (x+y) while (tan x + tan y) / (1 - tan x tan y) is equal to tan (x+y). Since tan (x+y) = sin (x+y) / cos (x+y), the problem is solved
  2. 20 April, 19:36
    0
    Tan (x) + tan (y) / 1 - tan (x) tan (y) = sin (x) cos (y) + cos (x) sin (y) / cos (x) cos (y) - sin (x) sin (y)

    tan (x + y) = sin (x + y) / cos (x + y)

    tan (x + y) = tan (x + y)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Verify each identity: (tan x + tan y) / (1 - tan x tan y) = (sin x cos y + cos x sin y) / (cos x cos y - sin x sin y) ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers