Ask Question
14 February, 11:16

Compute the value of the following expressions: 323 mod 5 323 div 5 - 323 mod 5 - 323 div 5 327 mod 3 (64 · (-67) + 201) mod 7 (〖38〗^12) mod 6 (〖38〗^12) mod 3

+3
Answers (1)
  1. 14 February, 11:36
    0
    323 mod 5 = 3

    -323 mod 5 = - 3

    327 mod 3 = 0

    (64 * (-67) + 201) mod 7 = 6

    (38^12) mod 6 = 4

    (38^12) mod 3 = 1

    Step-by-step explanation:

    The modulo operation looks for remainders from the quotients. In order to find them, divide the whole number by the mod number. Then take just the decimal after the whole answer and multiply it by the mod number.

    323 mod 5

    323/5 = 64.6

    .6 * 5 = 3

    -323 mod 5

    323/5 = - 64.6

    -.6 * 5 = - 3

    327 mod 3

    327/5 = 109

    0 * 3 = 0

    (64 * (-67) + 201) mod 7

    64 * - 67 = - 4288 + 201 = 4087

    4087/7 = 583.85714

    .85714 * 7 = 6

    (38^12) mod 6

    38^12 = 9.07x10^18

    9.07x10^18/6 = 1510956318082499242.6666667

    .666667 * 6 = 4

    (38^12) mod 3

    38^12 = 9.07x10^18

    9.07x10^18/3 = 3021912636164998485.333333

    .3333333 * 3 = 1
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Compute the value of the following expressions: 323 mod 5 323 div 5 - 323 mod 5 - 323 div 5 327 mod 3 (64 · (-67) + 201) mod 7 (〖38〗^12) ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers
You Might be Interested in