Ask Question
12 April, 18:39

The gas tank is made from A-36 steel and has an inner diameter of 1.50 m. If the tank is designed to withstand a pressure of 5 MPa, determine the required minimum wall thickness to the nearest millimeter using (a) the maximum shear stress theory, and (b) maximum distortion energy theory. Apply a factor of safety of 1.5 against yielding.

+5
Answers (1)
  1. 12 April, 18:40
    0
    (a) maximum shear stress t=22.5mm

    (b) maximum distortion energy t=19.48mm

    Explanation:

    Ф₁ (sigma) = pd/2t

    Ф₁ = (5*10⁶*1.5) / 2t

    Ф₁=3.75*10⁶/t

    Ф₂=pd/4t

    Ф₂=1.875*10⁶/t

    (a) According to maximum shear stress theory

    |Ф₁|=ФY/1.5

    3.75*10⁶/t=250*10⁶/1.5

    t=22.5 mm

    (b) According to distortion energy theory

    Ф₁²+Ф₂² - (Ф₁Ф₂) = (ФY/1.5) ²

    (3.75*10⁶/t) ² + (1.875*10⁶/t) - { (3.75*10⁶/t) (1.875*10⁶/t) } = (250*10⁶/1.5) ²

    t=19.48mm
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “The gas tank is made from A-36 steel and has an inner diameter of 1.50 m. If the tank is designed to withstand a pressure of 5 MPa, ...” in 📗 Physics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers