Ask Question
31 July, 17:21

If we wish to expand (x + y) 8, what is the coefficient of x 5 y 3? what is the coefficient of x 3 y 5?

+3
Answers (1)
  1. 31 July, 17:25
    0
    We use the binomial theorem to answer this question. Suppose we have a trinomial (a + b) ⁿ, we can determine any term to be:

    [n! / (n-r) ! r!] a^ (r) b^ (n-r)

    a.) For x⁵y³, the variables are: x=a and y=b. We already know the exponents of the variables. So, we equate this with the form of the binomial theorem.

    r = 5

    n - r = 3

    Solving for n,

    n = 3 + 5 = 8

    Therefore, the coefficient is equal to:

    Coefficient = n! / (n-r) ! r! = 8! / (8-5) !8! = 56

    b.) For x³y⁵, the variables are: x=a and y=b. We already know the exponents of the variables. So, we equate this with the form of the binomial theorem.

    r = 3

    n - r = 5

    Solving for n,

    n = 5 + 3 = 8

    Therefore, the coefficient is equal to:

    Coefficient = n! / (n-r) ! r! = 8! / (8-3) !8! = 56
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “If we wish to expand (x + y) 8, what is the coefficient of x 5 y 3? what is the coefficient of x 3 y 5? ...” in 📗 Physics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers