Ask Question
17 August, 17:24

A 2.7-kg ball is thrown upward with an initial speed of 20.0 m/s from the edge of a 45.0 m high cliff. At the instant the ball is thrown, a woman starts running away from the base of the cliff with a constant speed of 6.00 m/s. The woman runs in a straight line on level ground, and air resistance acting on the ball can be ignored. How far does the woman run before she catches the ball?

+5
Answers (1)
  1. 17 August, 17:52
    0
    The distance traveled by the woman is 34.1m

    Explanation:

    Given

    The initial height of the cliff

    yo = 45m final, positition y = 0m bottom of the cliff

    y = yo + ut - 1/2gt²

    u = 20.0m/s initial speed

    g = 9.80m/s²

    0 = 45.0 + 20*t - 1/2*9.8*t²

    0 = 45 + 20t - 4.9t²

    Solving quadratically or by using a calculator,

    t = 5.69s and - 1.61s byt time cannot be negative so t = 5.69s

    So this is the total time it takes for the ball to reach the ground from the height it was thrown.

    The distance traveled by the woman is

    s = vt

    Given the speed of the woman v = 6.00m/s

    Therefore

    s = 6.00*5.69 = 34.14m

    Approximately 34.1m to 3 significant figures.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “A 2.7-kg ball is thrown upward with an initial speed of 20.0 m/s from the edge of a 45.0 m high cliff. At the instant the ball is thrown, a ...” in 📗 Physics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers