Ask Question
10 July, 08:32

A ball is launched with initial speed v from ground level up a frictionless slope (This means the ball slides up the slope without rolling). The slope makes an angle θ with the horizontal. Using conservation of energy, find the maximum vertical height hmax to which the ball will climb.

+1
Answers (1)
  1. 10 July, 08:58
    0
    hmax = 1/2 · v²/g

    Explanation:

    Hi there!

    Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.

    KE = PE

    Where KE is the initial kinetic energy and PE is the final potential energy.

    The kinetic energy of the ball is calculated as follows:

    KE = 1/2 · m · v²

    Where:

    m = mass of the ball

    v = velocity.

    The potential energy is calculated as follows:

    PE = m · g · h

    Where:

    m = mass of the ball.

    g = acceleration due to gravity (known value: 9.81 m/s²).

    h = height.

    At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i. e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:

    PE = KE

    m · g · hmax = 1/2 · m · v²

    Solving for hmax:

    hmax = 1/2 · v² / g
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “A ball is launched with initial speed v from ground level up a frictionless slope (This means the ball slides up the slope without ...” in 📗 Physics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers