Ask Question
8 August, 01:40

A biometric security device using fingerprints erroneously refuse to admit 1 in 1,000 authorized person from a facility containing classified information. The device will erroneously admit 1 in 1,000,000 unauthorized persons. Assume that 95 percent of those who seek access are authorized. If the alarm goes off and a person is refused admission, what is the probability that the person was really authorized?

+3
Answers (1)
  1. 8 August, 02:06
    0
    0.01864

    Step-by-step explanation:

    Let A be the event that a person was authorized and NA be the event that the person was not authorized. Let R be the event that a person was refused admission and G be the event that a person was granted admission.

    Then we have to find P (A|R) = [P (A) * P (R|A) ]/P (R)

    putting value we get

    P (R) = P (A) P (R|A) + P (NA) P (R|NA) = 0.95 * (1/1000) + 0.05 * ((1,000,000-1) / 1,000,000) = 0.0.05094995

    P (A|R) = [P (A) * P (R|A) ]/P (R)

    = [0.95 * (1/1000) ] / (0.05094995)

    =0.01864
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “A biometric security device using fingerprints erroneously refuse to admit 1 in 1,000 authorized person from a facility containing ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers